
"Every Little Thing She Does is Magic":

Cardiac Murmurs Demystified

Sarah Schettle, PA-C, MS, MBA SBHPP 2024

Review Cardiac Anatomy

Auscultation Identification

Murmur Severity

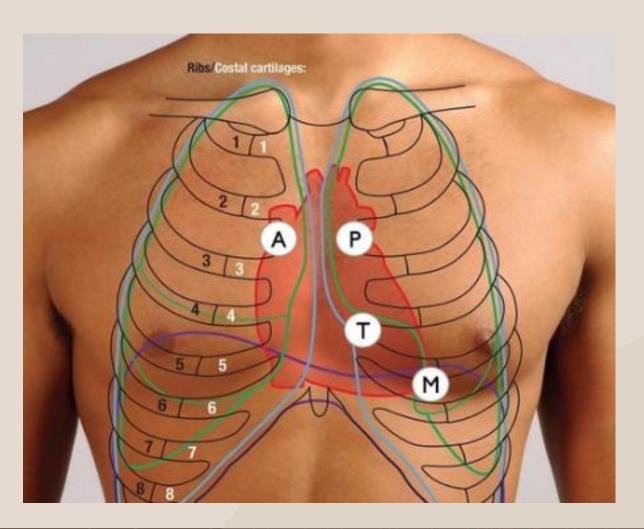
Interventions

Anatomy of your stethoscope

 Fun fact: Rene Theophile Hyacinthe Laënnec (1781–1826) was a French physician who invented the stethoscope in 1816

Greek: stethos (chest) and skopein (to

- Note: traditions vs new method
 - The "new" way was in part a fashion accessory borrowed from medical TV shows
 - Doctors used to wear their stethoscopes dangling down the front like a tie



Modern Day Stethoscope...

- Bell- better for lower-frequency sounds
- Diaphragm- better for higher frequencies.

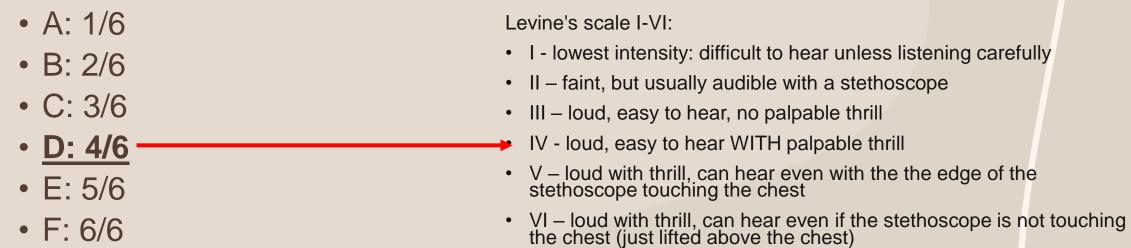
Auscultation Locations- APT M

Cardiovascular%20Examination%20%2D%20not%20download -Visit

Grading Murmurs

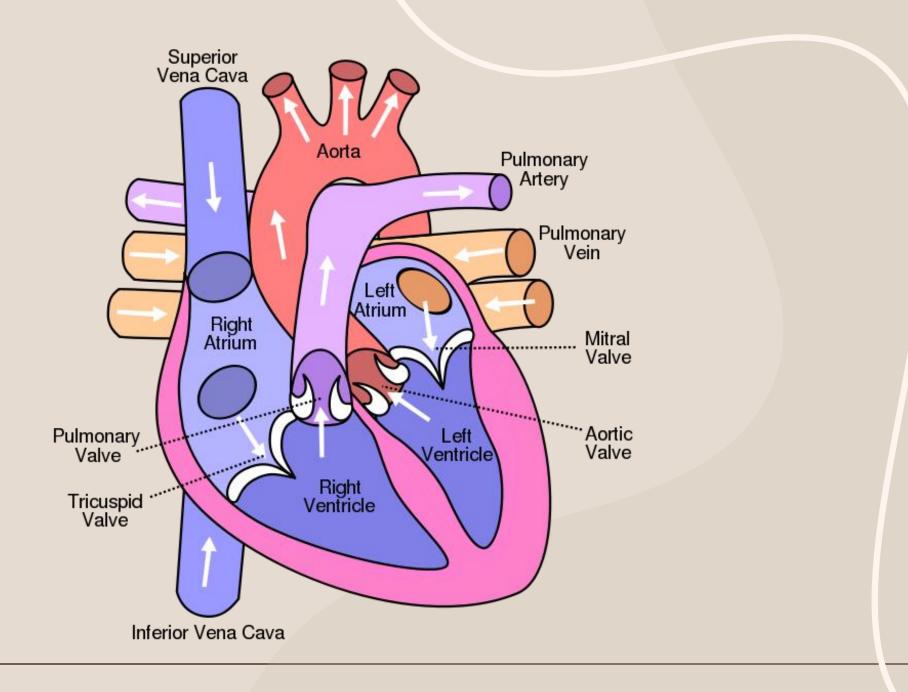
(thank you Samuel Levine (1891-1966), Cardiologist)

Levine's scale I-VI:

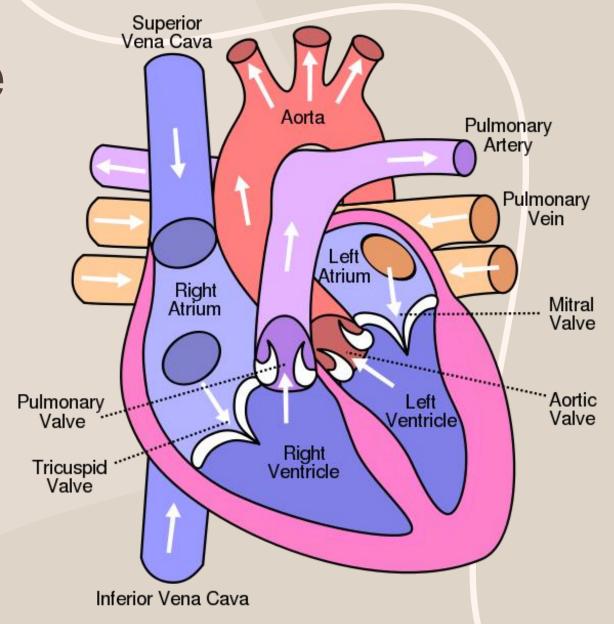

- I lowest intensity: difficult to hear unless listening carefully
- II faint, but usually audible with a stethoscope
- III loud, easy to hear, no palpable thrill
- IV loud, easy to hear WITH palpable thrill
- V loud with thrill, can hear even with the the edge of the stethoscope touching the chest
- VI loud with thrill, can hear even if the stethoscope is not touching the chest (just lifted above the chest)

Sample question:

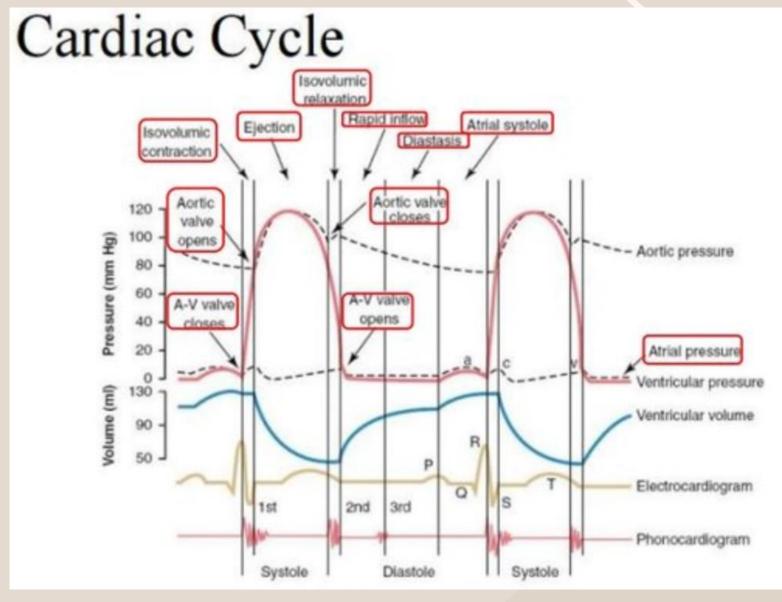
- You are seeing a patient in clinic and on palpitation notice a thrill. On auscultation you appreciate a loud murmur. How will you document this murmur?
 - A: 1/6
 - B: 2/6
 - C: 3/6
 - D: 4/6
 - E: 5/6
 - F: 6/6

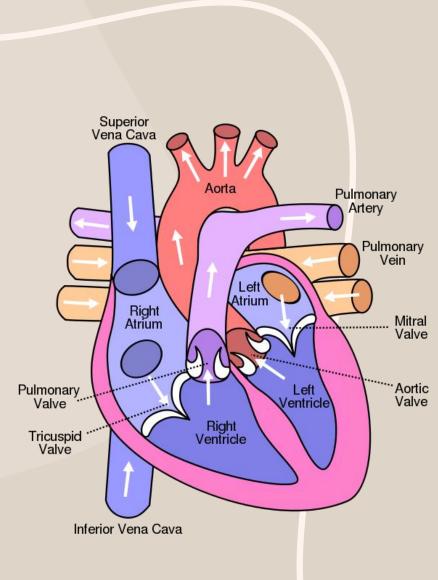

Sample question:

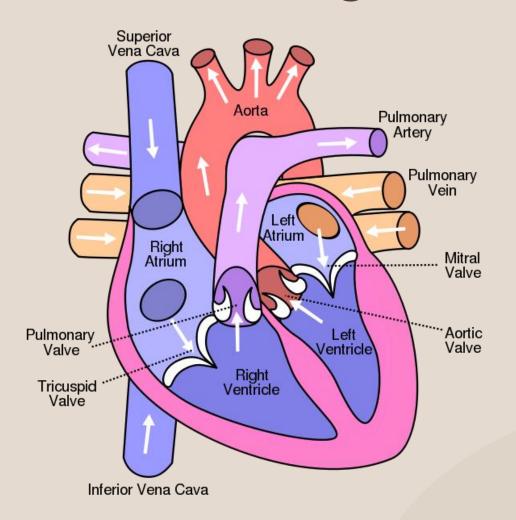
 You are seeing a patient in clinic and on palpitation notice a thrill. On auscultation you appreciate a loud murmur. How will you document this murmur?

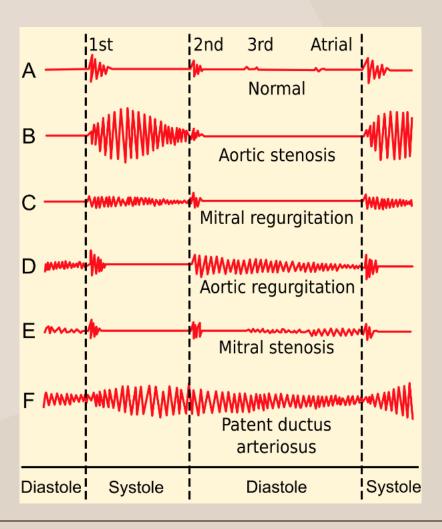

Valvular Heart Disease: CDC Facts

- 2.5% of the U.S. population
- More common in elderly
 - >1 in 8 people >75 have moderate or severe valve disease
- Rheumatic heart disease- commonly affects MV or AV
 - 11% of VHD deaths in US due to RHD
- Bicuspid AV rare but greater risk for VHD
 - 1-2% population, M>F
- VHD deaths more commonly due to AV disease
- AS, MR, and TR are the most common valvular disorders
- Success with TAVI has increase interest in similar interventions for MV and TV conditions

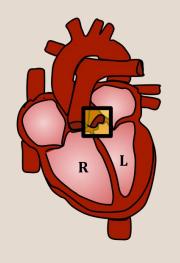

Systole and Diastole

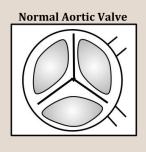

- Heart fills (think <u>D</u>ilates) during
 <u>D</u>iastole
- Hears ejects (think <u>S</u>queezes)
 in <u>S</u>ystole
- 4 heart valves
 - 2 let blood in to ventricles (Mitral, Tricuspid)
 - 2 let blood out of ventricles (Aortic, Pulmonary)

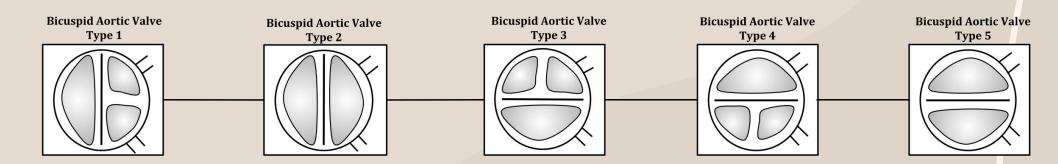

Auscultation tips


- Normal heart sounds and abnormal, or pathological heart sounds are caused by turbulent blood flow
 - Example: the closing of heart valves makes a sound
- Laminar flow is does not make noise and is silent
- Turbulent flow does make noise and can be auscultated
- Sometimes, this can be so pronounced that it can be palpated (more on this later)
 - This is called a "thrill"

Understanding murmurs

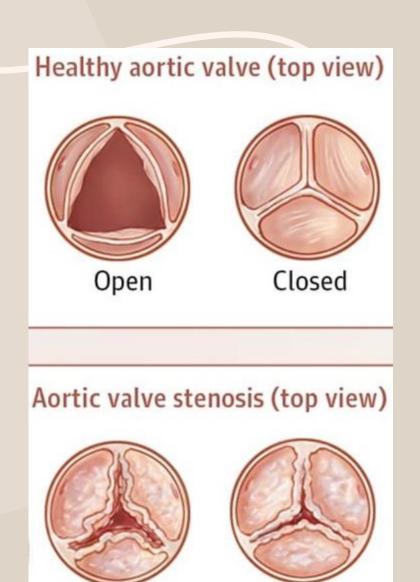





Aortic Stenosis Frequency

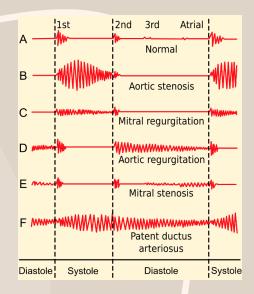
- Most common primary valve lesion requiring surgery or transcatheter intervention in Europe/North America
- 2nd most common valvular lesion in USA
- Uncommon if <65 y.o.
- Increasing frequency with age
- Approximate rates:
 - 0.2% in the 50–59-year group
 - 1.3% in the 60–69-year group
 - 3.9% in of the 70–79-year group
 - 9.8% in those aged 80–89 years
 - new AS: 5 per 1,000 per year, mean age 60

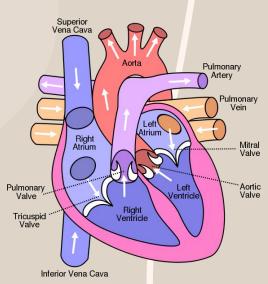
Bicuspid Aortic Valve



Aortic Stenosis: Etiology

- Due to thickening and calcification of the aortic valve
 - May see more frequently if bicuspid AV
 - Smoking
 - Hypertension
 - Chemo/radiation
 - Less commonly from scaring after endocarditis infection or rheumatic heart disease in USA
- Normal aortic valve area: 3 cm²
 - AS symptoms usually once valve area is <1 cm²
- Symptoms:
 - Angina
 - DOE
 - Syncope
 - Heart failure

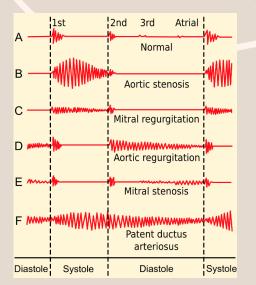

Open

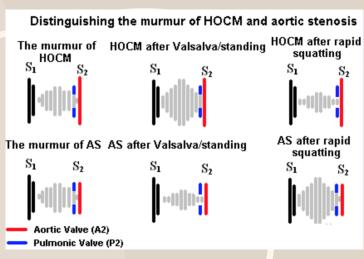

Closed

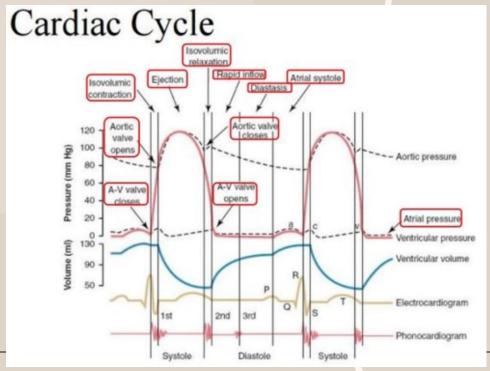
Aortic Stenosis: description

- High-pitched
- Systolic ejection murmur
- · Heard loudest over the aortic valve
- Crescendo-decrescendo (diamond shaped) quality
- Often radiates to the carotid arteries

- Aortic Stenosis Auscultation:
 - https://www.youtube.com/watch?v=cDXknORsJXw
 - https://www.youtube.com/watch?v=Fb8E7dr6g0A



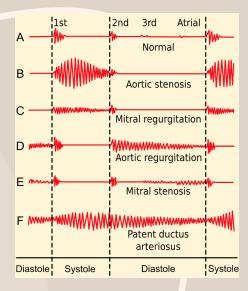

Aortic Stenosis 2.0 (severity)

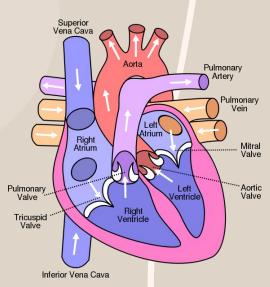

- Carotid arteries assessment
- "pulsus parvus et tardus"
 - Weak (parvus) pulse
 - Is it weak?
 - Palpate your own carotic artery while palpating the patient's
 - Delayed (tardus) carotid upstroke
 - Is it delayed?
 - Listen for patient's S2 heart sound while palpating carotid upstroke
 - S2 and carotid upstroke should take place nearly at same time
 - If carotid upstroke is delayed after S2, this suggests severe AS

Aortic Stenosis 2.0

- Auscultation @ apex may appear midsystolic or holosystolic (you might think MR)
 - AS typically radiates to carotids
- HOCM can also mimic AS
 - How to tell if AS or HCM?
 - Valsalva decreases AS and increases HCM murmur
- Split S2 in AS
 - Why? Delayed AV closure (need more time to complete LV systole)
 - As AS worsens, leaflets become less mobile and S2 intensity will decrease
 - When S2 cannot be heard, AS is more severe
- S4 occurs in severe LVH which is a consequence of AS
 - This also suggests more severe AS

AS: what to consider next

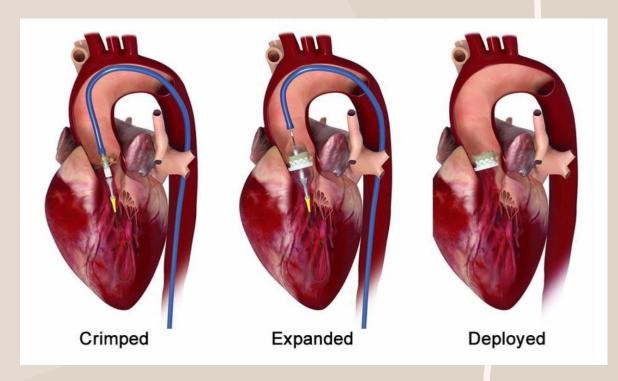

- Echocardiography, stress imaging, CT
- Surgery (if concerns of poor prognosis without intervention, low EF, symptoms, may be indicated if another surgery required)
- Transcatheter aortic valve implantation-TAVI
- Surgical aortic valve replacement-SAVR
- Medical therapy: "No medical therapies influence the natural history of aortic stenosis"
 - Still treat HF/HTN if present (with meds like ACEi), avoid vasodilators to avoid hypotension


TABLE 1. Prevalence of AR in the Framingham Offspring Study

	26–39	40–49	50–59	60–69	70–83
Men	(n=91)	(n-352)	(n=433)	(n=359)	(n=91)
None	96.7%	95.4%	91.1%	74.3%	75.6%
Trace	3.3%	2.9%	4.7%	13.0%	10.0%
Mild	0%	1.4%	3.7%	12.1%	12.2%
≥Moderate	0%	0.3%	0.5%	0.6%	2.2%
Women	(n=93)	(n=451)	(n=515)	(n=390)	(n=90)
None	98.9%	96.6%	92.4%	86.9%	73.0%
Trace	1.1%	2.7%	5.5%	6.3%	10.1%
Mild	0%	0.7%	1.9%	6.0%	14.6%
≥Moderate	0%	0%	0.2%	0.8%	2.3%

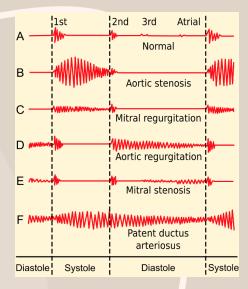
Aortic Regurgitation: description

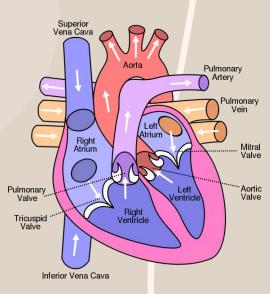
- AR has the highest frequency sound (~ 400 Hz)
- Decrescendo blowing diastolic murmur
- Best heard at cardiac base
- Corrigans Pulse
 - https://www.youtube.com/watch?v=Cb-EXdLIGGs (start at 4:58)
- Wide pulse pressure ("water hammer peripheral pulse")
- Nail bed pulsation ("Quincke pulse")
 - https://www.youtube.com/watch?v=ZzwoYTYVHSI
 - https://www.youtube.com/watch?v=9m_0RAQDFHM
- Popliteal brachial blood pressure difference > 20 mm Hg
- Murmur:
 - https://www.youtube.com/watch?v=_k5u933Blbo
 - https://www.youtube.com/watch?v=uZysrKXHJMM



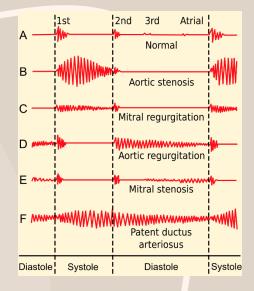
Aortic Regurgitation: Etiology

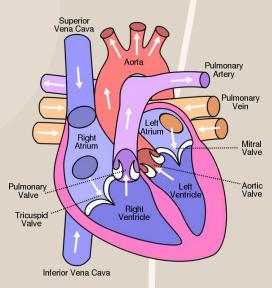
- High-income countries:
 - ~2/3 of AR due to degenerative tricuspid and bicuspid aortic regurgitation
- Other etiologies:
 - Endocarditis (infective and rheumatic)
 - Connective tissue disease
 - Right heart disease
 - Autoimmune disease
 - Rheumatic heart disease (especially in lower income countries)
 - Genetics
- Acute AR etiology:
 - Infective endocarditis>>aortic dissection


AR: what to consider next...


- Echocardiography (could do CT, MRI)
- Surgery (if significant- aorta enlargement, large LVEDD, low EF, symptoms, may be indicated if another surgery required (CAD))
- TAVI, SAVR, valve, others
- Medical therapy:
 - ACEi or dihydropiridines (CCBnifedipine, others)
 - If surgery and still HF consider ARB, BB

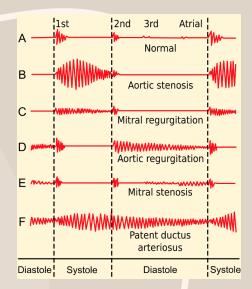
Mitral Regurgitation: frequency and etiology

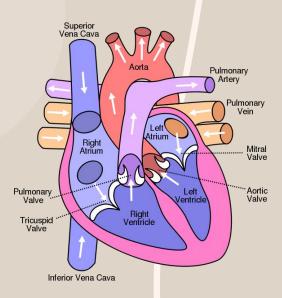

- 3rd most common form of valvular heart disease
- Degenerative causes (higher income countries)
- Rheumatic heart disease (lower income countries)
- MVP (most commonly diagnosed valvular heart disease)
 - 3-5% of population
 - Midsystolic click followed by midsystolic murmur
 - Handgrip increases intensity
 - Valsalva maneuver increases intensity
 - https://www.youtube.com/watch?v=sH_KmHIHR70
- Endocarditis
- Papillary muscle rupture



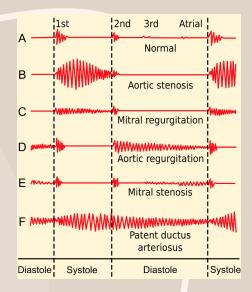
Mitral Regurgitation: Description

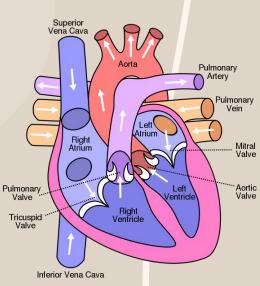
- Holosystolic
- "blowing" sound
- Best heard at the cardiac apex
- Radiation to the <u>axilla</u>
 - (vs. AS- recall: radiates to the carotids)
- S3 = severe MR, systolic heart failure
- https://www.youtube.com/watch?v=JKT9dQxBJqs


MR: what to consider next


- Echocardiography (could add exercise)
- Intervention (if significant- aorta enlargement, large LVEDD, low EF, high PA pressure, AF, symptoms, may be indicated if another surgery required (CAD))
- Repair vs. replacement
 - Transcatheter implant may be successful in some patients (transcatheter edge-to-edge repair-TEER)
 - Annuloplasty
 - Mitraclip
- Medical therapy:
 - Acute: nitrates, diuretics
 - Chronic: prophylactic vasodilators not indicated, just treat underlying HF

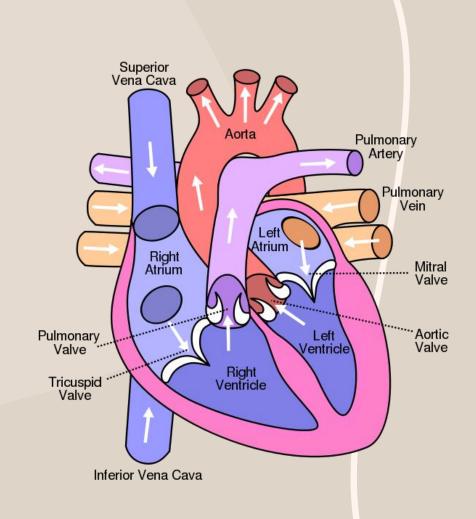
Mitral Stenosis: frequency and etiology


- Frequency: 1 in 100,000
- Onset is between 3rd/4th decades of life
- Degenerative
- Rheumatic (most common worldwide- less so in higher income countries)- will occur 20-40 years after
- F>M
- Will see progression of HF with MS

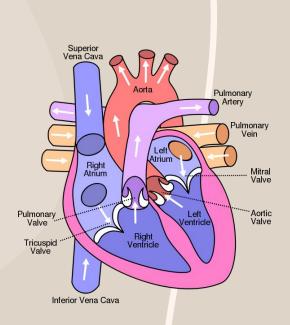


Mitral Stenosis: Description

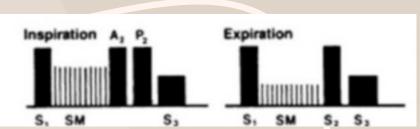
- Low frequency/low pitched (use the BELL)- less than 100 Hz
- Opening snap (OS) (forceful opening of MV)
- Mid-diastolic
- Rumbling
- Presystolic accentuation is heard after the opening snap
- Loud 1st sound (increased force to close MV)- sometimes palpable
- Louder in lleft lateral decubitus position
- Louder with isometric exercise
- May also see: left parasternal heave, tapping apical beat
- https://www.youtube.com/watch?v=wsY8cqGfawk
- https://www.youtube.com/watch?v=KK70reK7syg (start at 0:41)


MS: what to consider next

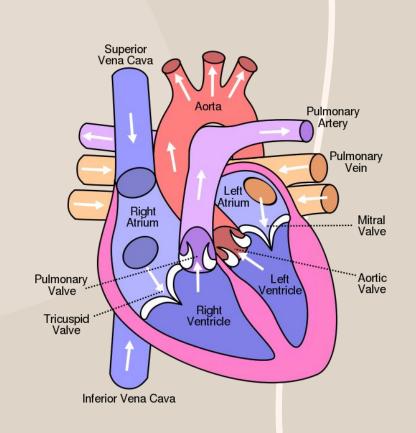
- Echocardiography
- Intervention (if symptoms, high risk without surgery)
- Surgery vs. percutaneous balloon valvuloplasty/percutaneous mitral commissurotomy
- Medications (to improve sxs): Diuretics, beta-blockers, digoxin, nondihydropyridine calcium channel blockers, ivabradine


Tricuspid Regurgitation: Etiology

- IV dug use
 - infective endocarditis
- Rheumatic heart disease
- Carcinoid syndrome
- Myxomatous disease
- Endomyocardial fibrosis
- Underlying congenital valve concerns
- Thoracic trauma
- TV damage

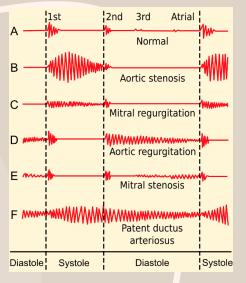


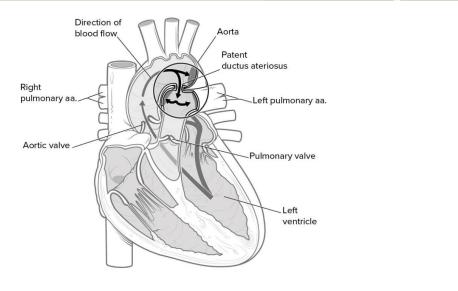
Tricuspid Regurgitation: Frequency


- Least common primary valvular pathology
 - But high mortality
- 0.55% of the general population
- prevalence increases with age
- 4% of the patients ≥ 75
- Secondary etiology most common (≥90%)
 - RV/RA dilatation, large TV annulus d/t chronic AF
 - Left-sided valvular dysfunction
 - Myocardial dysfunction
 - Development after left-sided valve surgery

Tricuspid Regurgitation: De

- Presentation: RHF (JVD, hepatojugular reflex, LE edema, ascites)
- S3 gallop
- Pansystolic murmur
- High pitched
- Loudest in 4th intercostal space (tricuspid region)
- Loudest during inspiration
- Parasternal region
- Increase intensity with: inspiration, exercise, leg raising
- Decrease intensity with: standing, Valsalva
- https://www.youtube.com/watch?v=UtbtHrIWFRo
- C-V waves ("Lancisi Sign") can be seen if severe TR:
 - https://www.youtube.com/watch?v=2VKP81EnSgg

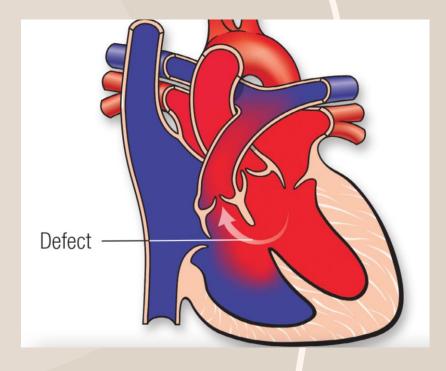


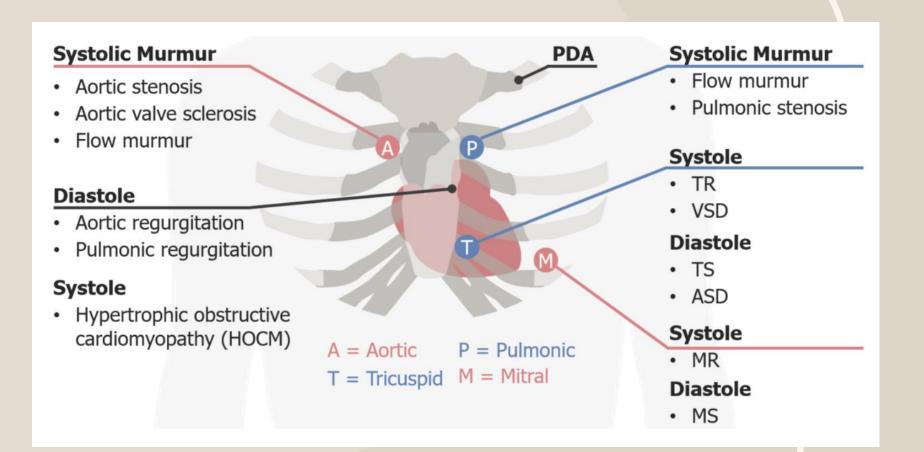

TR: what to consider next

- Echocardiography (could do MRI)
- Surgery (if significant, symptoms, RV dilation/dysfunction, consider if left sided surgery)
- Repair vs. replacement (annuloplasty preferred)
- Medical therapy: diuretics to treat underlying RHF

PDA (left-to-right shunt)

- Can occur in premature infants
 - Low rate if born at term: 0.02% and 0.006%
 - Premature: 20% in premature infants > 32 weeks, up to 60% in those < 28 weeks' gestation
- Up to 30% of low birth weight infants
- F>M
- Murmur description:
 - Diastolic
 - · Continuous machine-like murmur
 - Crescendo decrescendo
- Normally ductus arteriosus closes with 10-18 hours of birth
- Closure:
 - IV indomethacin
 - Catheter closure
 - Surgical ligation
- https://www.youtube.com/watch?v=Fm5xgS1xOOc




Schematic diagram of a left-to-right shunt of blood flow from the descending aorta via the patent ductus arteriosus (PDA) to the main pulmonary artery.

VSD

- Most common pathological murmur in children
- Occurs with congenital heart disease most commonly
- Frequently will close spontaneously during 1st year
 - Surgical closure if large defect
- Left to right shunt
- Harsh and loud (if small defect), softer/less harsh if large
- Pan-systolic
- best heard at left lower sternal border
- Handgrip increases intensity
- Example: https://www.youtube.com/watch?v=cVR0pybjRxM
- Example in adult: https://www.youtube.com/watch?v=joXtfE_iqU4

Review

Review

Physiologic changes	Maneuver	Murmurs that increase with maneuver	Murmurs that decrease with maneuver
Increased <u>preload</u> (on the right)	<u>Inspiration</u>	Most right-sided murmurs	Most left-sided murmurs
Increased <u>preload</u>	Lying supinePassive <u>leg</u>raiseSquatting	Most murmurs	HOCMMitral valve prolapse
Decreased <u>preload</u>	Valsalva (straining)Abrupt standing	HOCMMitral valve prolapse	Most murmurs
Increased <u>afterload</u>	Handgrip	Most murmurs, especially AR, MR, VSD	• AS • HOCM

- Standing abruptly
 - Decreases preload
 - Same effects as Valsalva.

Systolic Murmurs

Туре	<u>Cardiac</u> <u>cycle</u>	Pattern	Location	Additional description
Aortic stenosis	Systolic	Crescendo-decrescendo murmur	Right 2nd ICS (aortic)	 Paradoxical <u>splitting</u> of S2 (A2 decreased) S4
Pulmonic <u>stenosis</u>	Systolic	Crescendo-decrescendo murmur	Left 2nd ICS (pulmonic)	Click often present† With <u>inspiration</u>
<u>Mitral valve</u> prolapse	Systolic	Click, crescendo into S2 (can vary with severity)	Left 4th ICS (mitral)	Mid-to-late systolic click
<u>Mitral</u> regurgitation	Systolic	Uniform (holosystolic)	Left 4th ICS (mitral)	Holosystolic,high pitchedRadiates to <u>axilla</u>
<u>Tricuspid</u> regurgitation	Systolic	Uniform (holosystolic)	LLSB (tricuspid)	Holosystolic, high pitched† With inspiration
VSD	Systolic	Uniform (holosystolic)	LLSB (tricuspid)	Harsh, loud murmur

Diastolic Murmurs

Туре	<u>Cardiac</u> <u>cycle</u>	Pattern	Location	Additional description
AR	Diastolic	Decrescendo	Erb's point	S3 in acute <u>AR</u>High pitched
<u>Pulmonary</u> <u>regurgitation</u>	Diastolic	Decrescendo	Erb's point	↑ With <u>inspiration</u>
<u>Mitral stenosis</u>	Diastolic	Opening snap followed by decrescendo-crescendo murmur	Left 4th ICS (mitral)	 Opening snap Low-pitched, rumbling, mid-to-late diastolic murmur
<u>Tricuspid</u> stenosis	Diastolic	Frequently with <u>MS</u> (but softer and shorter than <u>MS</u>	LLSB (tricuspid)	Very rareLow pitched† With inspiration
Patent <u>ductus</u> <u>arteriosus</u>	Continuous	Crescendo-decrescendo murmur	Left 1st and 2nd ICS	Continuous machinery- like murmur

thank you

Sarah Schettle, PA-C, MS, MBA Sarah Schettle@gmail.com