Acute and chronic kidney disease: Seeking better outcomes

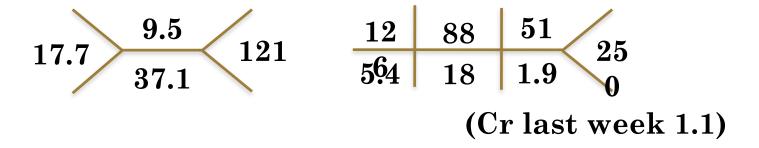
Zachary Hartsell DHA, PA-C

Disclosures

None. (Well, I am not a Nephrology PA).

 This presentation has no current affiliation or financial arrangements and does not cover any off-label uses of products.

Objectives


- Recognize the stages of kidney disease and the signs and symptoms that accompany them
- Define acute kidney injury (AKI), its different causes and treatment options
- Determine the desired goals of therapy for patients with progressive kidney disease
- Identify the indications for dialysis in a hospitalized patient with ESRD or AKI

Captain O'Hagen

- 66 y/o male who is a recently retired state trooper
- PMH
 - HTN on HCTZ and Lisinopril
 - Previous bladder CA status post resection and BCG
 - UTI one week ago treated with Bactrim
- Presents to ED with c/o fever, chills and worsening dysuria for the last 24 hours

Captain O'Hagen

VS: T 39.2 BP 90/45 P 115 R 26 Sat 96%

- UA: Large leukocytes, WBC: TNTC, RBC: Few
- EKG: Sinus tachycardia

Audience Response

What is the most likely cause of O' Hagen's renal failure?

Hypertensive nephropathy secondary to non-compliance

Acute tubular necrosis secondary to sepsis

Obstructive uropathy secondary to bladder CA

Prerenal azotemia secondary to dehydration

Interstitial nephritis secondary to Bactrim

Other diagnosis?

Acute Kidney Injury

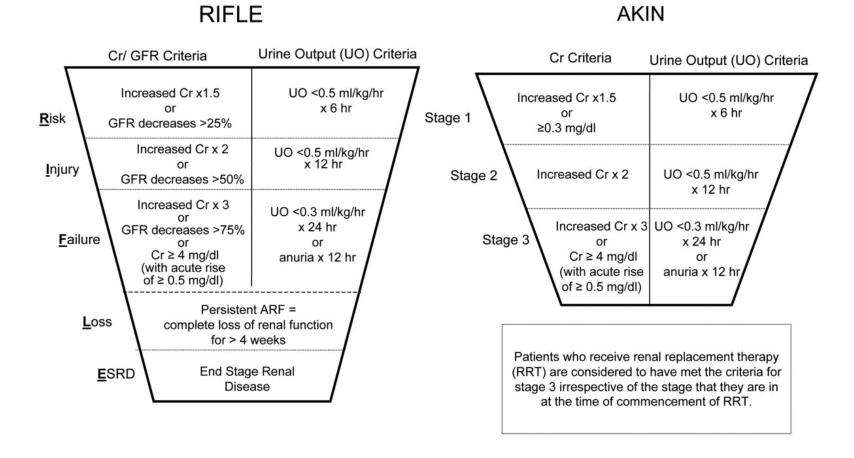
- Incidence
 - 3-7% of hospitalized patients.
 - 25-30% of ICU patients

- Sudden decline in renal function (GFR)
 - Failure to excrete metabolic waste products
 - Inability to maintain fluid and electrolyte balance
 - Impaired acid-base regulation

Cost of AKI in the Hospital

- When adjusted for severity, Acute Kidney Injury:
 - Increased the costs of hospitalization by \$1795
 - Increased LOS by 1.1 days

- In patients with AKI requiring dialysis
 - Increased the cost of hospitalization by \$42,077
 - Increased LOS by 11.5 days


Criteria

RIFLE

Acute Kidney Injury Network (AKIN)

 Kidney Disease: Improving Global Outcomes (KDIGO)

Diagnostic Criteria

Kidney International Supplements; 2012.

Diagnostic Criteria

- Kidney Disease: Improving Global Outcomes (KDIGO)
 - Combination of RIFLE and AKIN

Criteria	KDIGO
Diagnostic	Increase in serum creatinine of ≥0.3 mg/dL within 48 hours or ≥50% within 7 days <u>OR</u> Urine output of <0.5 mL/kg/hour for >6 hour
Stage 1	Increase in serum creatinine of ≥0.3 mg/dL or 50 to 99% <u>OR</u> Urine output of <0.5 mL/kg/hour for 6 to 12 hours
Stage 2	Increase in serum creatinine of 100 to 199% <u>OR</u> Urine output of <0.5 mL/kg/hour for 12 to 24 hours
Stage 3	Increase in serum creatinine of ≥200% <u>OR</u> Increase in serum creatinine of ≥0.3 mg/dL to ≥4.0 mg/dL <u>OR</u> Urine output of <0.3 mL/kg/hour for ≥24 hours or anuria for ≥12 hours <u>OR</u> Initiation of renal replacement therapy

Staging

- Staging
 - Risk RRT
 - Mortality
 - Long-term risk (after resolution)
 - Chronic kidney disease
 - Cardiovascular disease
 - RIFLE or AKIN acceptable but KDIGO most appropriate
 - Highest stage

Criteria Limitations

- Limitations
 - Need serum creatinine level
 - May underestimate fast progressing disease
 - Correlation between serum creatinine level and urine output not established
 - Poor correlation between AKI stage and GFR
 - Relies on relative changes in serum creatinine
 - Independent of cause of AKI

Audience Response

If it was reported that Captain O' Hagens urine output for the first 24 hours of hospitalization was 90mL, what would be the most appropriate classification of his kidney injury?

Oliguric

Non-oliguric

Anuric

End stage

Classification

- Urine output
 - How much urine is produced
 - Nonoliguric: >400mL/24 hour
 - Oliguric: <400mL/24 hour
 - Anuric: <100mL/24 hour
- Source of injury
 - Prerenal
 - Intrarenal
 - Postrenal

Prerenal

- Inadequate perfusion to the kidneys
 - True
 - Vascular depletion

- Effective
 - Low cardiac output

Change in vascular resistance

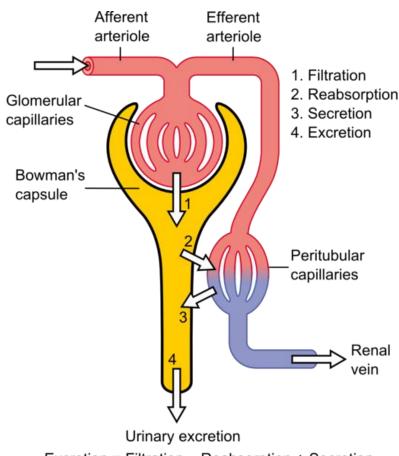
True Volume Depletion

- Hemorrhage
- GI
 - Vomiting
 - Diarrhea
 - NG tube
 - Pancreatitis

- Renal
 - Diabetic ketoacidosis
 - Addison's disease

- Cutaneous
 - Burns
 - Sweating

Effective Volume Depletion

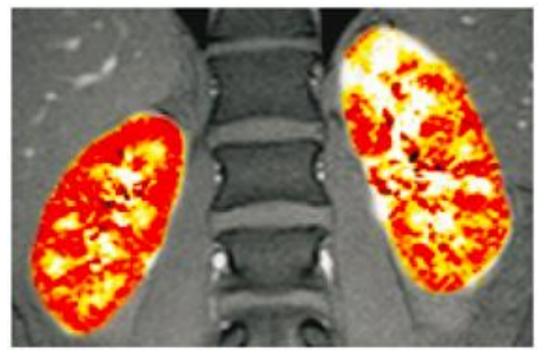

- Decreased effective circulating volume
 - Vasodilation
 - Sepsis
 - Cirrhosis
 - Anaphylaxis
 - Reduced cardiac output
 - Renal vasoconstriction

Vasoconstriction

Often medication induced

NSAIDs: Afferent arteriole

ACE-I/ARBs: Efferent arteriole



Excretion = Filtration – Reabsorption + Secretion

Intrarenal

- Glomerular
- Interstitial
- Vascular
- Tubular

• Most common: 85%

Tubular

- Ischemic
 - Hypotension
 - Sepsis
- Nephrotoxic
 - Medications
 - Aminoglycosides, Amphotericin B, Cisplatin, Contrast
 - Cast nephropathy
 - Multiple myeloma
 - Rhabdomyolysis

Contrast Nephropathy

- Renal tubular epithelial cell toxicity and renal medullary ischemia
- Second leading cause of acute kidney injury in hospitalized patients
- Risk factors
 - Age
 - Preexisting renal disease
 - Volume depletion
 - Comorbid conditions: Diabetes, CHF
 - Repeated doses of contrast

Contrast Nephropathy

- Prevention
 - Hydration is key
 - Acetylcysteine
 - Sodium bicarbonate

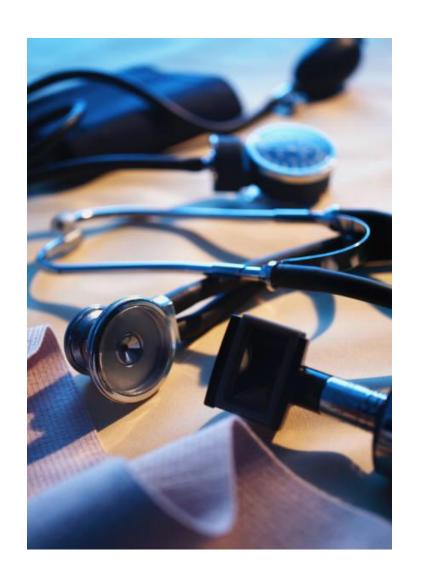
Postrenal

Obstruction

- Retroperitoneal fibrosis
- Bladder outlet obstruction
- Stones
- Crystals
- Tumors
- Clots
- BPH

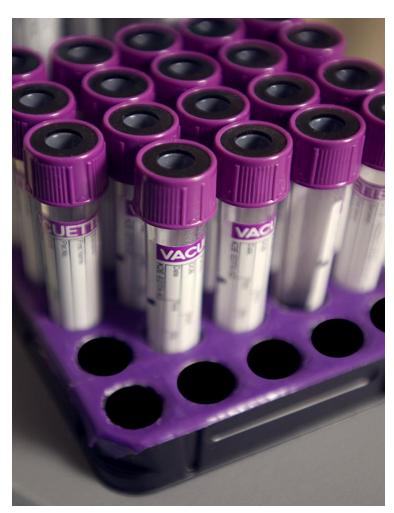
Back to Captain O'Hagen

Acute Tubular
Necrosis
Hypotension


Possible causes of AKI in this patient?

Effective volume depletion Acute Interstitial Disease

Pyelonephritis


Evaluation

- History and Physical
- Laboratory exams
 - Blood
 - Urinalysis
- Imaging
 - US
 - CT
 - MR
- Biopsy

Primary Blood Exams

- BUN
- Electrolytes
- CBC with differential
 - Eosinophils
- Phosphorus
- Uric acid

Evaluation

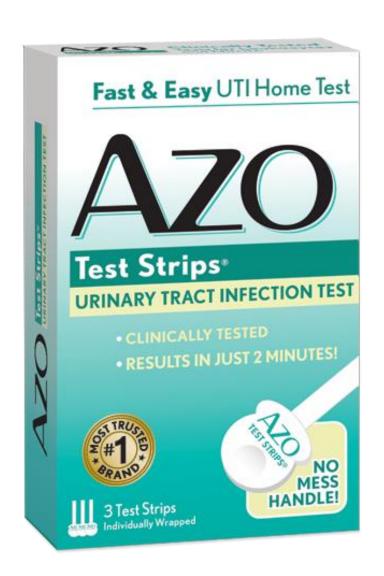
- Serum Creatinine
 - Normal range (Adult)

Male: 0.6 – 1.2 mg/dL

• Female: 0.5 – 1.1 mg/dL

<u>Creatinine</u>	<u>GFR</u>		
2 X normal	1/2 normal		
3 X normal	1/3 normal		
4 X normal	1/4 normal		
5 X normal	1/5 normal		

NKF- CKDEPI Creatinine Equation


Secondary Blood Exams

- Albumin
- ANA
- Anti-DS DNA Ab
- Cryoglobulins
- Complement
 - Low C3; Normal C4
- ANCA
- Anti-GBM
- Antistreptolysin O titer
- Hepatitis B & C Ab

Urine

- Urinalysis
- Urinary sediment
 - Muddy brown casts:
 - Pathognomonic of tubular injury
- Random electrolytes
- Eosinophils

Urine

- Urine protein/Urine creatinine ratio
 - Normal: <30 mg/g
 - 24 hour urine collection versus spot
 - In previous healthy individuals, 24 hour collection better but spot analysis nearly as accurate in predicting outcomes
 - Mixed evidence in patients with chronic kidney disease
 - Early morning sample best

FENa

Fractional Excretion of Sodium (FENa)

Interpretation:

- <1% suggests prerenal etiology
- >3% more suggestive of intrarenal (ATN)

Blood and Urine Studies

Type of kidney injury	BUN/ Creat ratio	Urine Osmolality	Urinalysis	Urine Volume	Proteinuria	Urine Na+	Fractional excretion Na+
Prerenal	>20:1	>500 mOsm/kg	Normal	Decreased	Trace	< 20 MEq/dL	<1%
Intrinsic	<20:1	250-300 mOsm/kg	Dark granular casts	Oliguric or nonoliguric	2+ - 4+	>30 MEq/dL	>3%
Postrenal	<20:1	> 400 mOsm/kg	Hyaline casts	Absent*	0 - Trace	< 20 MEq/dL	

ULTRASONOGRAPHY

Safe

Relatively inexpensive

Doppler

Rule out

Obstruction

Stone

Cyst or mass

Infection

RIGHT RENAL VEIN

Radiology

- Little value in CT or MRI
 - CT may be useful if retroperitoneal fibrosis or stone suspected
 - No gadolinium with GFR <30

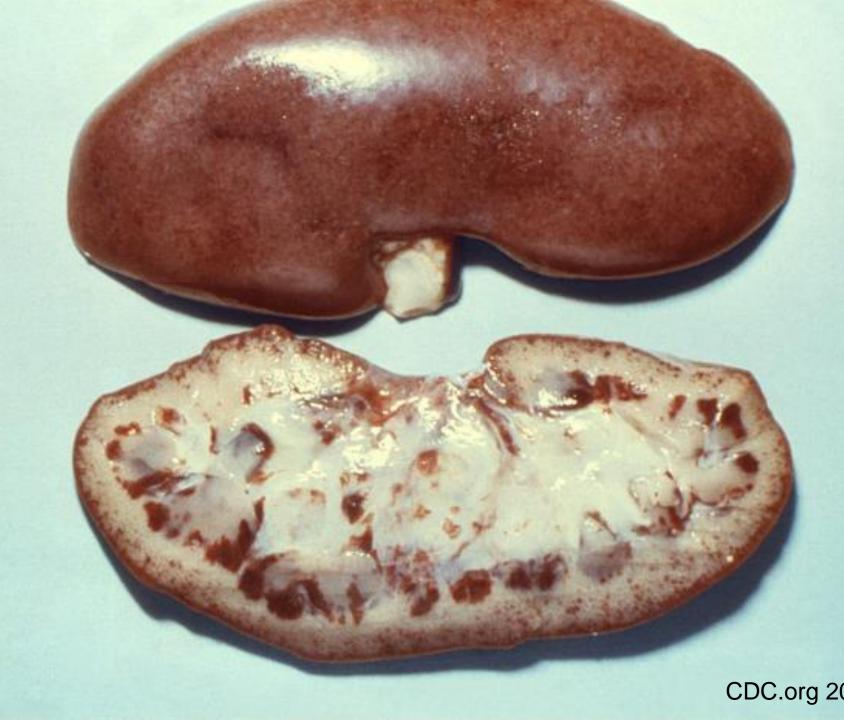
Practical Approach

- Detailed history and Physical
- Careful review of medical record
 - Medications
 - Procedures
- Labs
 - U/A, Urine electrolytes
 - CBC, Electrolytes
- Bladder scan
- +/- Ultrasound

Captain O'Hagen

Diagnosis: Sepsis secondary to urinary tract infection

Volume resuscitation


Improved BP and HR

Creatinine hospital day #3: 2.2

Captain O'Hagen

- Phosphorus, Uric acid, LDH WNL
- Urinary sediment shows muddy brown granular casts
- FENa 4%
- Renal US negative for pyelonephritis

MANAGEMENT

Management

- Optimization volume status, hemodynamics
- Avoidance nephrotoxins
 - Renal dosing of medications
- Nutritional support
- Complication management
 - Uremic complications
- Renal replacement

Medication Pearls

- Traditional medication concerns
 - Discontinue diuretics/ACE/ARD
 - Consider clonidine 0.1 mg PO 2–3 times a day or may use hydralazine 25 mg PO 2–3 times a day (if no other contraindications, i.e. reflex tachycardia) for high BP
 - Evaluate for impact of medications on kidneys or the need to renal dose medications
 - Don't forget about OTC medications or supplements
 - Avoid contrast studies

Nutrition Support

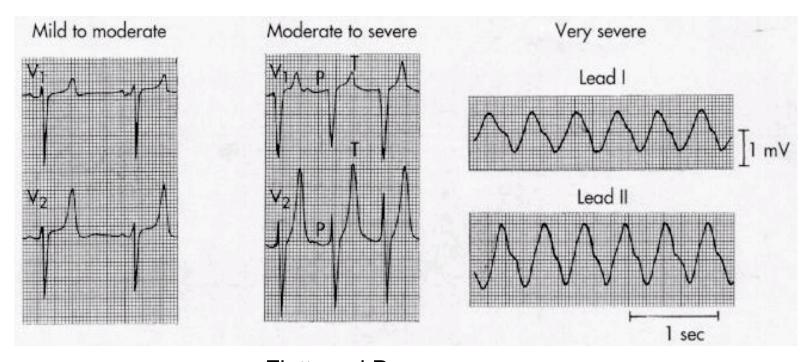
- Conflicting opinions
- Calorie maintenance historically ignored
- Protein restriction is controversial as acutely ill patients often run a protein deficit
 - Data lacking either way
 - Uremia may contribute to feeding challenges
- Most agree:
 - Low potassium
- Fluid restriction depends on fluid status
- May need tube feeding to provide calories

Complication Management

- Volume issues
 - Volume depletion
 - Volume overload
- Electrolytes
 - Hyperkalemia
 - Hypocalcemia
 - Hyperphosphatemia
- Metabolic acidosis
- Uremic complications

Daily Weights Strict I/O Daily labs Watch antiplatelet/anticoagulants

Prevention of AKI in the Hospital


- Avoid hypotension
- Maintain fluid balance
 - Selection of fluid (NEJM 2018)
 - Watch the I/O
- Avoid nephrotoxins

Hyperkalemia

- Normal range varies
- When to treat?
 - Based on clinical findings
 - EKG findings determine urgency

- Three treatment principles:
 - Stabilize cardiac membranes
 - Drive extracellular potassium into cells
 - Remove excess potassium from body

Hyperkalemia

Peaked T waves

Flattened P wave Widened QRS complex

Sine-wave pattern

Audience Response

Which of the following treatments for hyperkalemia acts by enhancing potassium uptake by cells?

Calcium gluconate

Furosemide (Lasix)

Albuterol (Proventil)

Sodium polystyrene sulfonate (Kayexalate)

Hyperkalemia

- Stabilize cardiac membranes
 - IV Calcium
- Drive extracellular potassium into cells
 - Insulin
 - Beta 2- adrenergic agonist
 - Sodium bicarbonate (Controversial)
- Remove excess potassium from body
 - Diuretics
 - Cation exchange resins
 - Dialysis

Audience Response

Which of the following is <u>NOT</u> a recognized indication for emergent hemodialysis?

Hyperkalemia

Treatment refractory fluid overload

Hyponatremia

Metabolic acidosis

Uremic pericarditis

Indications for Dialysis

- Acid-base disturbance
 - Metabolic acidosis
- Electrolyte abnormalities
 - Hyperkalmia with EKG changes
- Ingested toxins
- Overload refractory to diuretics
- Uremia
 - AMS, Seizure, Pericarditis

Role of Nephrologist

- In general, earlier is better
 - CKD model
- ICU patients (hospital patients)
- Considering dialysis
- Possible need for renal biopsy

Outcomes

- Strong association of AKI with hospital mortality
 - Overall mortality 20-90%
 - 33-66% of critically ill patients who develop AKI done survive to discharge
- Near linear increase in hospital mortality with increasing RIFLE class
 - R: 3x mortality of patients without AKI
 - I: 2x mortality of R
 - F: 10x mortality of patients without AKI

Outcomes in AKI

- 28% of patients admitted with AKI died within the subsequent 12 months
 - Causes CV (28%) and Cancer (28%)
 - Associated with age, cancer, chemotherapy and nursing home residence
- Increased cost
- Increased LOS

Audience Response

What is the most likely cause of death in a patient with acute kidney injury?

Hyperkalemia

Myocardial infarction

Infection

Stroke

Dialysis related complication

Death in Acute Kidney Injury

- Infections (30-70%)
- Cardiovascular events (5-30%)
- GI, pulmonary or neurologic complications (7-30%)
- Hyperkalemia or Dialysis related (1-2%)

Chronic Kidney Disease Management

Approach

- Focus on:
 - Reversible causes
 - Preventing and slowing progression
 - Treatment of complications
 - Adjust medications
 - Identify and prepare patients needing kidney replacement therapy

Evaluation

- Similar to hospital assessment
 - Careful history and physical
 - Determine disease duration
 - Assessment of GFR
 - Urine and chemistry analysis
 - Radiologic imaging
 - US favored
 - Serologic testing and biopsy as indicated*

Management

- Blood pressure control is paramount
 - More intensive verse less intensive
 - Differences between diabetic and non-diabetic
 - The recommendations are continually evolving, make sure to stay up to date with the evidence
- Slow disease progression
- Smoking cessation
- Glycemic control
- Avoid nephrotoxic events

Hospitalized Patients With CKD/ESRD

- On average, patients with ESRD are admitted twice a year
- 30% will be readmitted within 30 days of a discharge
- Hospitalization accounts for 40% of all spending on ESRD patients
- Age-adjusted life expectancy in patients with ESRD lower then the general population

Take Home Points

- Acute Kidney Injury (AKI) is associated with significant increased cost and morbidity/mortality in the hospitalized patient.
- Careful history and physical are often the key to diagnosis.
- Remember to adjust medications based on renal function.
- The vowels can help you remember the indications for acute dialysis (*A*,*E*,*I*,*O*,*U*).
- Timing of medications around hemodialysis is crucial to achieve therapeutic levels.

Questions?

References

- •Boon, et al. Spot Urine Estimations Are Equivalent to 24-Hour Urine Assessments of Urine Protein Excretion for Predicting Clinical Outcomes. International Journal of Nephrology. 2015. 8. https://www.hindawi.com/journals/ijn/2015/156484/
- •Coresh, J. et. Al. Prevalence of kidney disease in united states. JAMA 2007;298, 2038-2047.
- •Graves, J. Diagnosis and management of chronic kidney disease. *Mayo clinic proceedings*. Vol. 83 no. 9 1064-1069. 2008
- •Hauser, A. et. Al. Characteristics and causes of immune dysfunction related to uremia and dialysis. *Peritoneal Dialysis International*, Vol. 28 (2008), Supplement 3.
- •Kidney Disease Improving Global Outcomes. Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements. 2012;2:1-138. Available from: http://www.kidney-international.org. Accessed February 16, 2014.
- •Kidney and Urologic Diseases Statistics of United States, April 2010. National Kidney and Urologic Diseases Information Clearing house (NKUDIC).

http://kidney.niddk.nih.gov/kudiseases/pubs/kustats/. Accessed January 3, 2011.

References

- •Kao, et. Al. Life expectancy, expected years of life lost and survival of hemodialysis and peritoneal dialysis patients. *J Nephrol* 2010; 23(06): 677-682.
- •Lam AQ, Seifter JL. Assessment and Management of the Renal Patient. In: McKean SC, Ross JJ, Dressler DD, Brotman DJ, Ginsberg JS. *Principles and Practice of Hospital Medicine*. New York, NY: McGraw-Hill; 2010: 378-393.
- •Murphree DD, Thelen SM. Chronic Kidney Disease in Primary Care. *J Am Board Fam Med* 2010; 23:542–550. Sharfuddin AA, Weisbord SD, Palevsky PM, Molitoris BA. Acute Kidney Injury. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM. *Brenner and Rector's The Kidney.* 9th ed. Philadelphia, PA: Elsevier Saunders; 2012: 1044-1099. Silver et al. Causes of death after hospitalization with AKI. Journal of the American Society of Nephrology. 2017. 29.3. 1001-1010.
- •Silver et al. Cost of Acute Kidney Injury in Hospitalized Patients. Journal of Hospital Medicine. 2017. 12.2. 70-76.
- •Sprangers B, Evenepoel P, et al. Late Referral of Patients With Chronic Kidney Disease: No Time to Waste. *Mayo Clinic Proceedings*. 2006. 81(11):1487-1494
- •Tonelli et.al. Chronic kidney disease and mortality: a meta-analysis. *J Am Soc Nephrol* 2006. 17: 2034–2047.