Acute Kidney Injury Cases

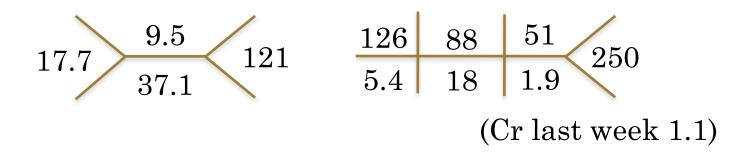
Zachary Hartsell DHA, PA-C

Disclosures

• None. (Well, I am not a Nephrology PA).

• This presentation has no current affiliation or financial arrangements and does not cover any off-label uses of products.

Objectives


- Recognize the stages of kidney disease and the signs and symptoms that accompany them
- Define acute kidney injury (AKI), its different causes and treatment options
- Determine the desired goals of therapy for patients with progressive kidney disease
- Identify the indications for dialysis in a hospitalized patient with ESRD or AKI

Captain O'Hagen

- 66 y/o male who is a recently retired state trooper
- PMH
 - HTN on HCTZ and Lisinopril
 - Previous bladder CA status post resection and BCG
 - UTI one week ago treated with Bactrim
- Presents to ED with c/o fever, chills and worsening dysuria for the last 24 hours

Captain O'Hagen

• VS: T 39.2 BP 90/45 P 115 R 26 Sat 96%

- UA: Large leukocytes, WBC: TNTC, RBC: Few
- EKG: Sinus tachycardia

Audience Response

 What is the most likely cause of Captain O' Hagen's renal failure?

- A. Hypertensive nephropathy secondary to non-compliance
- B. Acute tubular necrosis secondary to sepsis
- C. Obstructive uropathy secondary to bladder CA
- D. Prerenal azotemia secondary to dehydration
- E. Interstitial nephritis secondary to Bactrim

Acute Kidney Injury

- Incidence
 - 3-7% of hospitalized patients.
 - 25-30% of ICU patients

- Sudden decline in renal function (GFR)
 - Failure to excrete metabolic waste products
 - Inability to maintain fluid and electrolyte balance
 - Impaired acid-base regulation

Cost of AKI in the Hospital

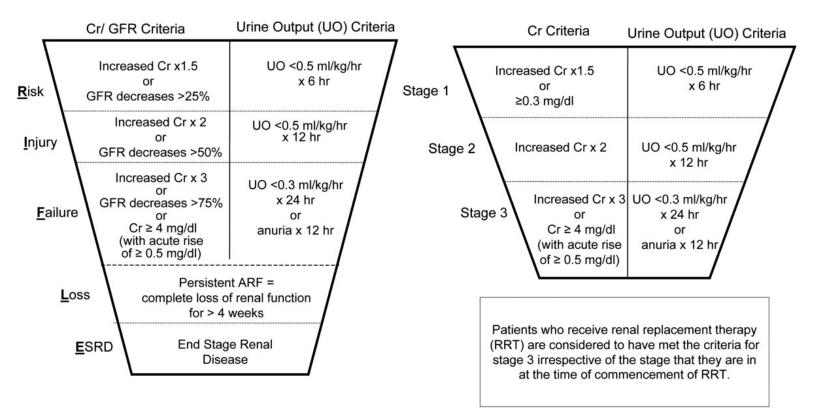
- When adjusted for severity, Acute Kidney Injury:
 - Increased the costs of hospitalization by \$1795
 - Increased LOS by 1.1 days

- In patients with AKI requiring dialysis
 - Increased the cost of hospitalization by \$42,077
 - Increased LOS by 11.5 days

Journal of Hospital Medicine.2017

Criteria

- RIFLE
 - System for classification of severity/staging <u>and</u> outcome
 - Spectrum of kidney impairment/injury
 - Based on changes in serum creatinine <u>or</u> urine output
 - Severity classes: Risk, Injury, Failure
 - Outcome classes: Loss, ESRD


Criteria

- Acute Kidney Injury Network (AKIN)
 - Modification of RIFLE to include diagnostic criteria and staging of disease
 - Risk category
 - Addition of a 0.3mg/dL or higher increase in serum creatinine level
 - Better capture of I and F classes in RIFLE

Diagnostic Criteria

RIFLE

Diagnostic Criteria

- Kidney Disease: Improving Global Outcomes (KDIGO)
 - Combination of RIFLE and AKIN

Criteria	KDIGO			
Diagnostic	Increase in serum creatinine of ≥0.3 mg/dL within 48 hours or ≥50% within 7 days <u>OR</u> Urine output of <0.5 mL/kg/hour for >6 hour			
Stage 1	Increase in serum creatinine of ≥0.3 mg/dL or 50 to 99% <u>OR</u> Urine output of <0.5 mL/kg/hour for 6 to 12 hours			
Stage 2	Increase in serum creatinine of 100 to 199% <u>OR</u> Urine output of <0.5 mL/kg/hour for 12 to 24 hours			
Stage 3	Increase in serum creatinine of ≥200% <u>OR</u> Increase in serum creatinine of ≥0.3 mg/dL to ≥4.0 mg/dL <u>OR</u> Urine output of <0.3 mL/kg/hour for ≥24 hours or anuria for ≥12 hours <u>OR</u> Initiation of renal replacement therapy			

Staging

- Staging
 - Risk RRT
 - Mortality
 - Long-term risk (after resolution)
 - Chronic kidney disease
 - Cardiovascular disease
 - RIFLE or AKIN acceptable
 - Highest stage

Criteria Limitations

- Limitations
 - Need serum creatinine level
 - May underestimate fast progressing disease
 - Correlation between serum creatinine level and urine output not established
 - Poor correlation between AKI stage and GFR
 - Relies on relative changes in serum creatinine
 - Independent of cause of AKI

Audience Response

- If it was reported that Captain O' Hagens urine output for the first 24 hours of hospitalization was 90mL, what would be the most appropriate classification of his kidney injury?
 - A. Oliguric
 - B. Non-oliguric
 - C. Anuric
 - D. End stage

Classification

- Urine output
 - How much urine is produced
 - Nonoliguric: >400mL/24 hour
 - Oliguric: <400mL/24 hour
 - Anuric: <100mL/24 hour
- Source of injury
 - Prerenal
 - Intrarenal
 - Postrenal

Prerenal

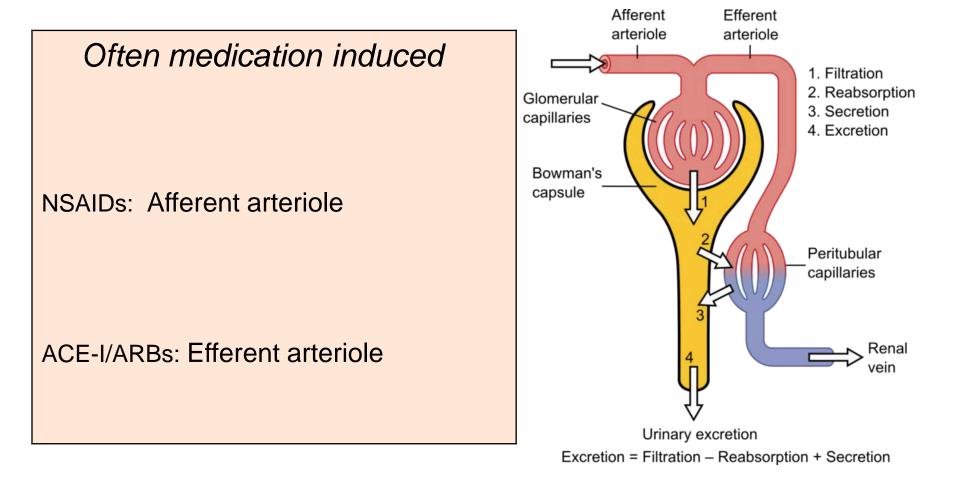
- Inadequate perfusion to the kidneys
 - True
 - Vascular depletion

- Effective
 - Low cardiac output

• Change in vascular resistance

True Volume Depletion

- Hemorrhage
- Gl
 - Vomiting
 - Diarrhea
 - NG tube
 - Pancreatitis


- Renal
 - Diabetic ketoacidosis
 - Addison's disease

- Cutaneous
 - Burns
 - Sweating

Effective Volume Depletion

- Decreased effective circulating volume
 - Vasodilation
 - Sepsis
 - Cirrhosis
 - Anaphylaxis
 - Reduced cardiac output
 - Renal vasoconstriction

Vasoconstriction

Dr. Reem Al-Quadah, 2011

Intrarenal

- Glomerular
- Interstitial
- Vascular
- Tubular
 - Most common: 85%

"Bold MRI" Kidney International 2006

Tubular

- Ischemic
 - Hypotension
 - Sepsis
- Nephrotoxic
 - Medications

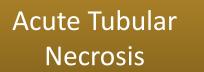
- Aminoglycosides, Amphotericin B, Cisplatin, Contrast
- Cast nephropathy
 - Multiple myeloma
- Rhabdomyolysis

Contrast Nephropathy

- Renal tubular epithelial cell toxicity and renal medullary ischemia
- Second leading cause of acute kidney injury in hospitalized patients
- Risk factors
 - Age
 - Preexisting renal disease
 - Volume depletion
 - Comorbid conditions: Diabetes, CHF
 - Repeated doses of contrast

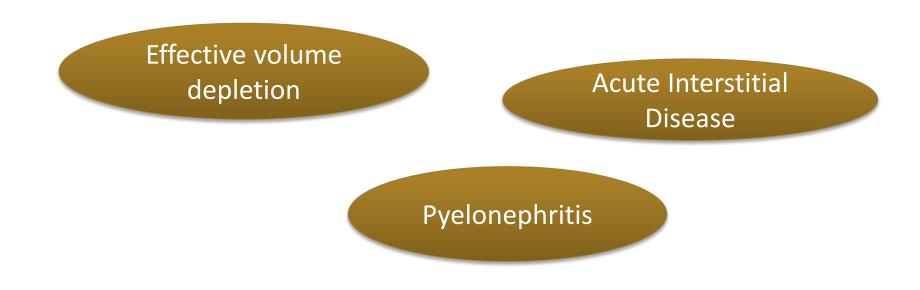
Contrast Nephropathy

- Prevention
 - Hydration is key
 - Acetylcysteine
 - Sodium bicarbonate


Postrenal

Obstruction

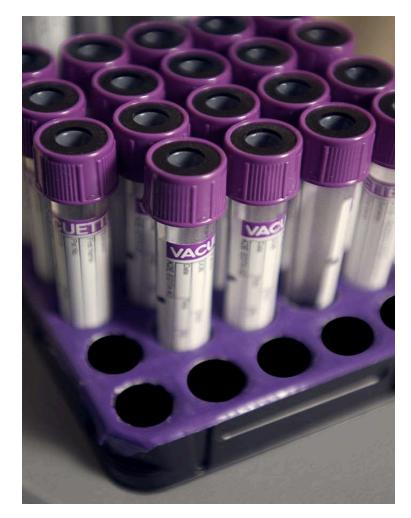
- Retroperitoneal fibrosis
- Bladder outlet obstruction
- Stones
- Crystals
- Tumors
- Clots
- BPH


Back to Captain O'Hagen

Metastasis

Hypotension

Possible causes of AKI in this patient?


Evaluation

- History and Physical
- Laboratory exams
 - Blood
 - Urinalysis
- Imaging
 - US
 - CT
 - MR
- Biopsy

Primary Blood Exams

- BUN
- Electrolytes
- CBC with differential
 - Eosinophils
- Phosphorus
- Uric acid

CDC.org

Evaluation

- Serum Creatinine
 - Normal range (Adult)
 - Male: 0.6 1.2 mg/dL
 - Female: 0.5 1.1 mg/dL

<u>Creatinine</u>	<u>GFR</u>		
2 X normal	1/2 normal		
3 X normal	1/3 normal		
4 X normal	1/4 normal		
5 X normal	1/5 normal		

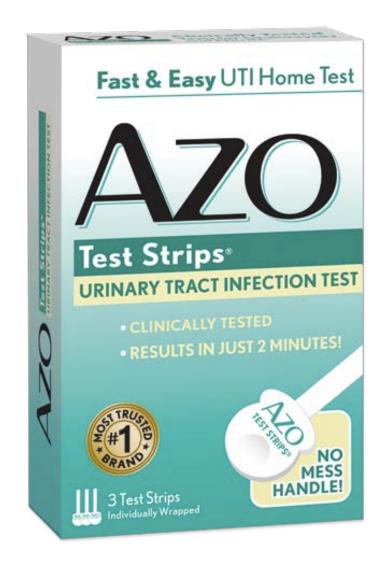
• NKF- CKDEPI Creatinine Equation

Calculating GFR

Cockcroft-Gault

eC_{Cr} = <u>(140-Age) x Mass(kg) x (0.85 if female)</u> 72 x Serum Creatinine(mg/dL)

- Modification of Diet in Renal Disease (MDRD)
 - More accurate
 - eGFR = 186 x Serum Creatinine^{-1.154} x Age^{-0.203}
 x (1.210 if Black) x (0.742 if Female)


Secondary Blood Exams

- Albumin
- ANA
- Anti-DS DNA Ab
- Cryoglobulins
- Complement
 - Low C3; Normal C4
- ANCA
- Anti-GBM
- Antistreptolysin O titer
- Hepatitis B & C Ab

Urine

- Urinalysis
- Urinary sediment
 - Muddy brown casts:
 - Pathognomonic of tubular injury
- Random electrolytes
- Eosinophils

Azoproducts.com

Urine

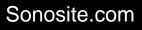
- Urine protein/Urine creatinine ratio
 - Normal: <30 mg/g
 - 24 hour urine collection versus spot
 - In previous healthy individuals, 24 hour collection better but spot analysis nearly as accurate in predicting outcomes
 - Mixed evidence in patients with chronic kidney disease
 - Early morning sample best

Fractional Excretion of Sodium (FENa)

UNa x PCr FENa % = _____ x 100 PNa x UCr

Interpretation: <1% suggests prerenal etiology >3% more suggestive of intrarenal (ATN)

Blood and Urine Studies


Type of kidney injury	BUN/ Creat ratio	Urine Osmolality	Urinalysis	Urine Volume	Proteinuria	Urine Na+	Fractional excretion Na+
Prerenal	>20:1	>500 mOsm/kg	Normal	Decreased	Trace	< 20 MEq/dL	<1%
Intrinsic	<20:1	250-300 mOsm/kg	Dark granular casts	Oliguric or nonoliguric	2+ - 4+	>30 MEq/d∟	>3%
Postrenal	<20:1	> 400 mOsm/kg	Hyaline casts	Absent*	0 - Trace	< 20 MEq/dL	
	∇		L	l		I	

Captain O'Hagen

Wake Forest Baptist Medical Center

- ULTRASONOGRAPHY
- Safe
- Relatively inexpensive
- Doppler
- Rule out
 - Obstruction
 - Stone
 - Cyst or mass Infection

RIGHT RENAL VEIN

Radiology

- Little value in CT or MRI
 - CT may be useful if retroperitoneal fibrosis or stone suspected
 - No gadolinium with GFR <30

Role of Biopsy

- Indications
 - Unexplained CKD
 - Unexplained worsening AKI
 - Nephrotic syndrome
 - Acute nephritic syndrome

Contraindications

- Solitary native kidney
- Bleeding diathesis
- Hydronephrosis
- Pyelonephritis
- Renal tumor

Rarely needed to diagnose AKI

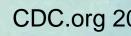
Practical Approach

- Detailed history and Physical
- Careful review of medical record
 - Medications
 - Procedures
- Labs
 - U/A, Urine electrolytes
 - CBC, Electrolytes
- Bladder scan
- +/- Ultrasound

Captain O'Hagen

• Diagnosis: Sepsis secondary to urinary tract infection

• Volume resuscitation


• Improved BP and HR

• Creatinine hospital day #3: 2.2

Captain O'Hagen

- Phosphorus, Uric acid, LDH WNL
- Urinary sediment shows muddy brown granular casts
- FENa 4%
- Renal US negative for pyelonephritis

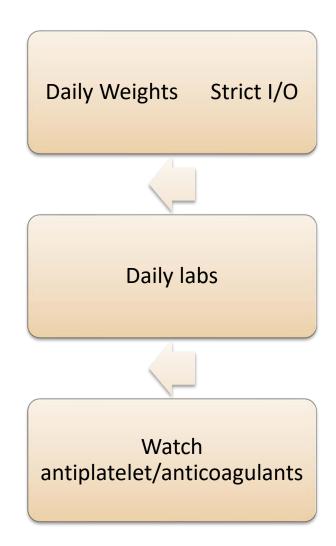
Management

- Optimization volume status, hemodynamics
- Avoidance nephrotoxins
 - Renal dosing of medications
- Nutritional support
- Complication management
 - Uremic complications
- Renal replacement

Medication Pearls

- Traditional medication concerns
 - Discontinue diuretics/ACE/ARD
 - Consider clonidine 0.1 mg PO 2–3 times a day or may use hydralazine 25 mg PO 2–3 times a day (if no other contraindications, i.e. reflex tachycardia) for high BP
 - Vancomycin, Gentamycin, Potassium supplements
 - Don't forget about OTC medications or supplements
 - Avoid contrast studies

Medication Pearls

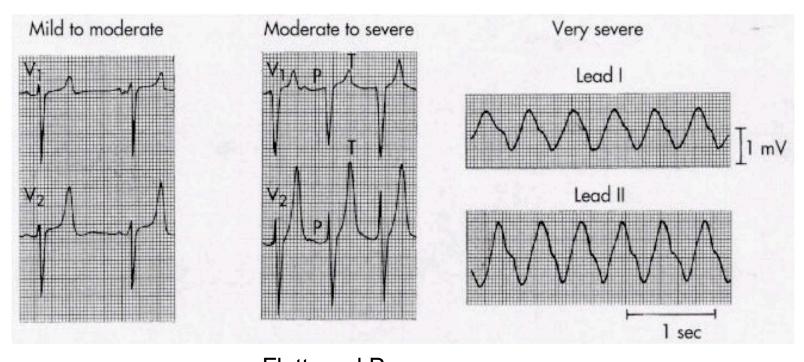

- Some medications can cause a false positive rise in creatinine
 - Interfere with creatinine secretion
 - Interfere with assay
 - Examples
 - Cimetidine
 - Trimethoprim
 - Cefoitin
 - Flucytosine

Nutrition Support

- Conflicting opinions
- Calorie maintenance historically ignored
- Protein restriction is controversial as acutely ill patients often run a protein deficit
 - Data lacking either way
 - Uremia may contribute to feeding challenges
- Most agree:
 - Low potassium
- Fluid restriction depends on fluid status
- May need tube feeding to provide calories

Complication Management

- Volume issues
 - Volume depletion
 - Volume overload
- Electrolytes
 - Hyperkalemia
 - Hypocalcemia
 - Hyperphosphatemia
- Metabolic acidosis
- Uremic complications



Hyperkalemia

- Normal range varies
- When to treat?
 - Based on clinical findings
 - EKG findings determine urgency

- Three treatment principles:
 - Stabilize cardiac membranes
 - Drive extracellular potassium into cells
 - Remove excess potassium from body

Hyperkalemia

Peaked T waves

Flattened P wave Widened QRS complex

Sine-wave pattern

Audience Response

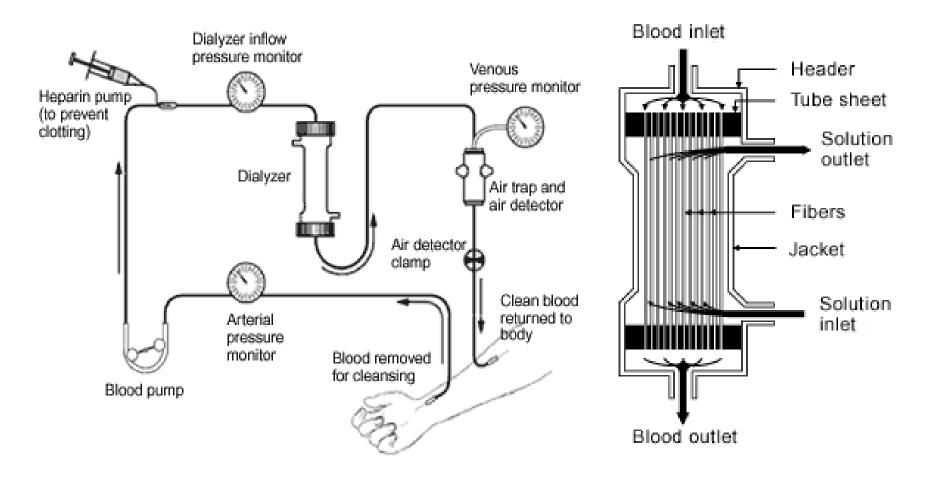
- Which of the following treatments for hyperkalemia acts by enhancing potassium uptake by cells?
 - A. Calcium gluconate
 - B. Furosemide (Lasix)
 - C. Albuterol (Proventil)
 - D. Sodium polystyrene sulfonate (Kayexalate)

Hyperkalemia

- Stabilize cardiac membranes
 - IV Calcium
- Drive extracellular potassium into cells
 - Insulin
 - Beta 2- adrenergic agonist
 - Sodium bicarbonate (Controversial)
- Remove excess potassium from body
 - Diuretics
 - Cation exchange resins
 - Dialysis

Audience Response

- Which of the following is <u>NOT</u> a recognized indication for emergent hemodialysis?
 - A. Hyperkalemia
 - B. Treatment refractory fluid overload
 - C. Hyponatremia
 - D. Metabolic acidosis
 - E. Uremic pericarditis


Indications for Dialysis

- Acid-base disturbance
 - Metabolic acidosis
- Electrolyte abnormalities
 - Hyperkalmia with EKG changes
- Ingested toxins
- Overload refractory to diuretics
- Uremia
 - AMS, Seizure, Pericarditis

What is Dialysis

- Diffusion of small molecules down their concentration gradient across a semipermeable membrane.
 - Diffusion: Movements of small particles down their gradients
 - Ultrafiltration: Removal of water from a patients circulation

Standard Hemodialysis

Role of Nephrologist in Management of AKI in the Hospital

- In general earlier is better
 - CKD model
- ICU patients
- Considering dialysis
- Possible need for renal biopsy

Outcomes

- Strong association of AKI with hospital mortality
 - Overall mortality 20-90%
 - 33-66% of critically ill patients who develop AKI done survive to discharge
- Near linear increase in hospital mortality with increasing RIFLE class
 - R: 3x mortality of patients without AKI
 - I: 2x mortality of R
 - F: 10x mortality of patients without AKI

Outcomes in AKI

- 28% of patients admitted with AKI died within the subsequent 12 months
 - Causes CV (28%) and Cancer (28%)
 - Associated with age, cancer, chemotherapy and nursing home residence
- Increased cost
- Increased LOS

Audience Response

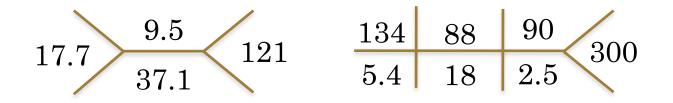
- What is the most likely cause of death in a patient with acute kidney injury?
 - A.Hyperkalemia
 - **B.Myocardial infarction**
 - C.Infection
 - D.Stroke
 - E.Dialysis related complication

Death in Acute Kidney Injury

- Infections (30-70%)
- Cardiovascular events (5-30%)
- GI, pulmonary or neurologic complications (7-30%)
- Hyperkalemia or Dialysis related (1-2%)

Prevention of AKI in the Hospital

- Avoid hypotension
- Maintain fluid balance
 - Selection of fluid (NEJM 2018)
 - Watch the I/O
- Avoid nephrotoxins


Hospitalized patients with ESRD

Mr. Farva

- 50 y/o male who is a country western signer
- PMH
 - History of Type 1 DM and HTN
 - Progressive CKD
 - Started dialysis 8 months ago with a M,W,F schedule, still has left chest catheter for dialysis
 - Makes little/no urine
- Presents to ED with c/o fever, chills and cough for the last 3 days. Fever in dialysis today, sent to ER.

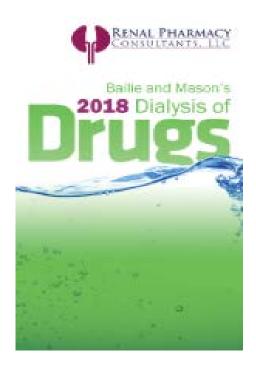
• VS: T 39.2 BP 100/45 P 95 R 26 Sat 90%

- UA: Unable to obtain
- EKG: Sinus tachycardia, no acute CT Changes
- CXR: RLL infiltrate

Mr. Farva

- Patient started on piperacillin-tazobactam, levaquin and vancomycin for healthcare associated pneumonia.
- Nursing asks about timing of the antibiotics in relation to patients dialysis in the morning.
- What would you recommend?

Hospitalized Patients With ESRD


- On average, patients with ESRD are admitted twice a year
- 30% will be readmitted within 30 days of a discharge
- Hospitalization accounts for 40% of all spending on ESRD patients
- Age-adjusted life expectancy in patients with ESRD lower then the general population

Hospitalized Patients With ESRD

- Three types of patients with Renal Replacement Therapy (RRT)
 - Hemodialysis
 - Peritoneal Dialysis
 - Renal Transplant

Hemodialysis

- Dialysis access
 - Temporary access/ lines- source of infection?
 - IV access
- Fluid status and electrolytes
- Bleeding diathesis
- Drug dosing
- Timing of procedures
- Timing of medications

Peritoneal Dialysis

- Timing of dialysis
- Infection, infection, infection
- Dialysis solutions
 - Nephrology typically involved
- Electrolytes

Transplant Patient

- Immunosuppressants
 - Don't miss doses*
 - Drug levels/ dose timing
 - Drug/ drug interactions
- Infection, infection, infection

Take Home Points

- Acute Kidney Injury (AKI) is associated with significant increased cost and morbidity/mortality in the hospitalized patient.
- Careful history and physical are often the key to diagnosis.
- Remember to adjust medications based on renal function.
- The vowels can help you remember the indications for acute dialysis (*A*,*E*,*I*,*O*,*U*).
- Timing of medications around hemodialysis is crucial to achieve therapeutic levels.

Questions?

References

•Boon, et al. Spot Urine Estimations Are Equivalent to 24-Hour Urine Assessments of Urine Protein Excretion for Predicting Clinical Outcomes. International Journal of Nephrology. 2015. 8. <u>https://www.hindawi.com/journals/ijn/2015/156484/</u>

•Coresh, J. et. Al. Prevalence of kidney disease in united states. JAMA 2007;298, 2038-2047.

•Graves, J. Diagnosis and management of chronic kidney disease. *Mayo clinic proceedings.* Vol. 83 no. 9 1064-1069. 2008

•Hauser, A. et. Al. Characteristics and causes of immune dysfunction related to uremia and dialysis. *Peritoneal Dialysis International,* Vol. 28 (2008), Supplement 3.

•Kidney Disease Improving Global Outcomes. Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements. 2012;2:1-138. Available from: <u>http://www.kidney-international.org</u>. Accessed February 16, 2014.

•Kidney and Urologic Diseases Statistics of United States, April 2010. National Kidney and Urologic Diseases Information Clearing house (NKUDIC). <u>http://kidney.niddk.nih.gov/kudiseases/pubs/kustats/</u>. Accessed January 3, 2011.

References

•Kao, et. Al. Life expectancy, expected years of life lost and survival of hemodialysis and peritoneal dialysis patients. *J Nephrol* 2010; 23(06): 677-682.

•Lam AQ, Seifter JL. Assessment and Management of the Renal Patient. In: McKean SC, Ross JJ, Dressler DD, Brotman DJ, Ginsberg JS. *Principles and Practice of Hospital Medicine*. New York, NY: McGraw-Hill; 2010: 378-393.

•Murphree DD, Thelen SM. Chronic Kidney Disease in Primary Care. *J Am Board Fam Med* 2010; 23:542–550. Sharfuddin AA, Weisbord SD, Palevsky PM, Molitoris BA. Acute Kidney Injury. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM. *Brenner and Rector's The Kidney.* 9th ed. Philadelphia, PA: Elsevier Saunders; 2012: 1044-1099. Silver et al. Causes of death after hospitalization with AKI. Journal of the American Society of Nephrology. 2017. 29.3. 1001-1010.

•Silver et al. Cost of Acute Kidney Injury in Hospitalized Patients. Journal of Hospital Medicine. 2017. 12.2. 70-76.

•Sprangers B, Evenepoel P, et al. Late Referral of Patients With Chronic Kidney Disease: No Time to Waste. *Mayo Clinic Proceedings*. 2006. 81(11):1487-1494

•Tonelli et.al. Chronic kidney disease and mortality: a meta-analysis. *J Am Soc Nephrol 2006*. 17: 2034–2047.